Near the center of the Milky Wayare enormous filaments of radio energy that sometimes look like bones,Watch Leverage Online and one in particular has astronomers playing orthopaedists.
If the new picture at the top of this story reminds you of an X-ray, well, that's because it is. Scientists used a spacetelescope to examine a conspicuous fracture along the bone's 230 light-yearlength. The images from NASA's Chandra X-ray Observatory, coupled with data from the MeerKAT radio telescope in South Africa and the National Science Foundation's Very Large Array, have revealed what likely caused it to crack.
The assailant, seen right at the point of the break, could be a fast-spinning neutron star, known as a pulsar. Scientists think that, as the object whizzed through the galaxy at breakneck speed, it slammed through the bone and just kept on going. The collision apparently distorted the bone's magnetic field and warped its radio signal.
The discovery not only offers a diagnosis for how the filament fractured but highlights that a single star can rattle the galaxy, even long after its own death. The findingsdescribed by NASA this week were published in Monthly Notices of the Royal Astronomical Society.
Researchers have named the filament G359-dot-something-something-something, but friends and fun astronomers just call it "The Snake." Why, you might ask? Because G359.13142-0.20005 just doesn't roll off the tongue.
The glowing streak threads through the congested downtown of the Milky Way. Dozens of other such filamentsappear in radio waves around the galactic center, lit up by particles spiraling through parallel magnetic fields. The Snake is one of the longest and brightest of its kind.
But why these structures exist — and what makes some longer and more luminous than others — remains a mystery.
As for the assailant, it's trying to make a quick getaway. Neutron stars form when massive stars explode into supernovas, leaving behind a crushed stellar core, perhaps just 10 miles wide. But a pulsarbeams radiation as it revolves like a lighthouse beacon.
The new images also suggest extra X-rays may be coming from the area around the pulsar. Particles like electrons and positrons — tiny pieces of matter and antimatter — that sped up during the crash may have caused them.
After a supernova, remnant neutron stars often get an intense kickback from the blast. Scientists estimate this pulsar could be flying at a dizzying 1 million to 2 million mph.
Topics NASA
(Editor: {typename type="name"/})
Stablecoin bill advances in U.S. Senate as Trump critics call to end his crypto dealings
A Week in Culture: Happy Menocal, Artist by Happy Menocal
Happy Birthday, Flannery O'Connor by Sadie Stein
watchOS 10: How to add widgets to Apple Watch
Amazon Pet Day: All the best deals
Notes from a Bookshop: March, or Waiting for Redbird by Kelly McMasters
The worst app updates of 2023 (so far)
'Quordle' today: See each 'Quordle' answer and hints for June 19
Best Sony headphones deal: Over $100 off Sony XM5 headphones
AOC raised $200,000 for charity on her 'Among Us' Twitch stream Friday
接受PR>=1、BR>=1,流量相当,内容相关类链接。